Transfer Learnin
Fine-tuning Con
Neural Networks
ESADE - MIBA (FALL 2017)

Transfer learning

Source task /
domain Target task /
domain

Storing knowledge gained solving
one problem and applying it to a
different but related problem.

Model

Model

Source: Sebastian Ruder Kn C}WlEdgE

Transfer Learning

» Use pretrained networks with
other datasets

* Avoid random Initialization

» Use convolutional layers features IMAGE
as inputs for other ML algorithms

Transfer Learning

edureka!
«\We do not have enough 0 |
d t Deep Learning
ata .
* Big generic datasets :
C . - Machine Learni
 Subsets are similar to our S SrnE e
data o
>

Amount of data

Source; edureka

Case 1: Pretrained Network

Weights file

¢

Input > | Neural Network > Output

- Weights and biases initialized with trained values
- No training needed

Case 1: Pretrained Network

In []1:

In []:

from keras.applications.inception_v3 import InceptionV3, preprocess input
from keras.preprocessing import image

from keras.applications.imagenet_utils import decode predictions

import numpy as np

import h5py

import matplotlib.pyplot as plt

import urllib.request

Zmatplotlib inline

model = InceptionV3(weights="imagenet")

img = image.load_img{img_path,_target_sizgzizgg, 299))
plt.imshow(img)

X = image.img to array(img)
¥ = np.expand dims(x, axis=8)
X = preprocess input(x)

preds = model.predict(x)

decode the results into a list of tuples (class, description, probability)
(one such list for each sample in the batch)

print('Predicted:', decode predictions(preds, top=3)[@])

Case 2: Feature extractor

convl conv2 conv3 conv4 convs fcl fe2 fc3 softmax
max] o max max prediction
pool pool pool pool pool dropout dropout

- Weights and biases initialized with trained values

Case 2: Feature extractor

convl conv2 conv3 conv4 convs fcl fe2 fc3 softmax

Max

pool pool F300| I Eooi | Eool Idrogout dropout |

Case 2: Feature extractor

No Trainable

convl conv2 conv3 conv4 convs fcl fe2 fc3 softmax

Max max maXx

max max
ool ool dropout
pool p p | pool | pool | dropout p

»

Neural Network

SVN

Linear classifier

Q-—o—m:—-m-‘

Case 2: Feature extractor

Extract features with VGG16

from keras.applications.vggl6e import VGG16

from keras.preprocessing import image

from keras.applications.vggl6é import preprocess input
import numpy as np

model = VGGl6(weights='imagenet', include top=False)

img path = ‘elephant.jpg’
img = image.load img(img path, target size=(224, 224})

X = image.img to array(img)
X = np.expand dims(x, axis=0)
X = preprocess input(x)

features = model.predict(x)

Source:; keras docs

Case 2: Feature extractor

No Trainable

convl conv?2 conv3 conv4 convs softmax

*ikk

max ax

max
pool pool pool pool

Neural Network

SVN

Other ML

QFU‘QS—-NH—I

Case 2: Feature extractor

Extract features from an arbitrary intermediate layer with VGG19

from keras.applications.vggl9 impeort VGG19

from keras.preprocessing import image

from keras.applications.vggl9 import preprocess input
from keras.models import Model

import numpy as np

base_model = VGG19(weights="1imagenet’)
model = Model({inputs=base model.input, outputs=base model.get layer('block4 pool').output)

img path = "elephant.jpg’
img = image.load img(img_path, target size=(224, 224))

X = image.img to array(img)
X = np.expand dims(x, axis=0)
X = preprocess input(x)

blockd4 pool features = model.predict(x)

Source:; keras docs

Case 3: Fine tuning

convl conv2 conv3 conv4 convs fcl fe2 fc3 softmax
max] o max max prediction
pool pool pool pool pool dropout dropout

- Weights and biases initialized with trained values

Case 3a: Fine tuning

< Trainable >

convl conv2 conv3 conv4 convs fcl fe2 fc3 softmax
max] o max max prediction
pool pool pool pool pool dropout dropout

- Weights and biases initialized with trained values
- Train all the network with the new data

Case 3a: Fine tuning

< Trainable >

convl conv2 conv3 conv4 convs fcl fe2 fc3 softmax
max] o max max prediction
pool pool pool pool pool dropout dropout

- Weights and biases initialized with trained values
- Train all the network with the new data
* Reduce the learning rate

Case 3b: Fine tuning

No Trainable Trainable >

convl conv2 conv3 conv4 convs fcl fc2 fc3 softmax
x dc -
t
pool pool pool gooi Eool dropout = | dropout prediction

- Weights and biases initialized with trained values
- Train some parts of the network with the new data

Case 3b: Fine tuning

No Trainable Trainable >

convl conv2 conv3 conv4 convs fcl fc2 fc3 softmax
x dc -
t
pool pool pool gooi Eool dropout = | dropout prediction

- Weights and biases initialized with trained values
- Train some parts of the network with the new data
- Reduce the learning rate

Case 3: Fine tuning

from keras import applications

from keras.preprocessing.image import ImageDataGenerator # build a classifier model to put on top of the convolutional model

from keras import optimizers top_model = Sequential()

from keras.models import Sequential top_model.add(Flatten{input_shape=model.output_shape[1:]})

from keras.layers import Dropout, Flatten, Dense top_model.add(Dense(256, activation="'relu'})
top_model.add(Dropout(B.5))

path to the model weights files. top_model.add(Dense(1, activation='sigmoid'))

weights_path = '../keras/examples/vgglGé _weights.h3'

top_model weights_path = 'fc_model.h5' # note that it is necessary to start with a fully-trained

dimensions of our images. # classifier, including the top classifier,

img_width, img_height = 1506, 158 # in order to successfully do fine-tuning
top_model.load_weights(top_model weights_path)

train_data dir = 'cats_and_dogs_small/train'

validation_data_dir = 'cats_and_dogs_small/validation' # add the model on top of the convolutional base

nb_train_samples = 2000 model.add(top_model)

nb_validation_samples = 800G

epochs = 50 # set the first 25 layers (up to the last conv block)

e

batch_size = 16 to non-trainable (weights will not be updated)
for layer in model.layers[:25]:

build the VGG16 network layer.trainable = False

model = applications.VGG16(weights="imagenet', include_top=False}

print(‘Model loaded.') Source: keras github

Case 3: Fine tuning

from keras import applications

from keras.preprocessing.image import ImageDataGenerator # puild a classifier model to put on top of the convolutional model

from keras import optimizers top_model = Sequential()

from keras.models import Sequential top_model.add(Flatten{input_shape=model.output_shape[1:]})

from keras.layers import Dropout, Flatten, Dense top_model.add(Dense(256, activation='relu'})
top_model.add(Dropout(B.5))

path to the model weights files. top_model.add(Dense(1, activation='sigmoid'))

weights_path = '../keras/examples/vgglGé _weights.h3'

top_model_weights_path = 'fc_model.h5' # note that it is necessary to start with a fully-trained

dimensions of our images. # classifier, including the top classifier,

img_width, img_height = 1506, 158 # in order to successfully do fine-tuning
top_model.load_weights(top_model weights_path)

train_data dir = 'cats_and_dogs_small/train'

validation_data_dir = 'cats_and_dogs_small/validation' # add the model on top of the convolutional base

nb_train_samples = 2000 model.add(top_model)

nb_validation_samples = 800G
epochs = 5@ # set the first 25 layers (up to the last conv block)
batch_size = 16 be updated)

on-trainable (weights wil
for layer in model.layers[:25]:
build the VGG16 network layer.trainable = False
model = applications.VGG16(weights="imagenet', include_top=False}

print('Model loaded. ") Source: keras github

Transfer Learning

Similar Data Different Data

Small Data Feature extractor Feature extractor
(All layers) + Other (First layers) +
classifier Other classifier
Big Data Fine tuning From scratch - No

transfer learning

Source: Stanford CS231n

Transfer Learning

e Caffe
o Model Zoo - A platform for third party contributors to share pre-trained caffe models
e Keras

o Keras Application - Implementation of popular state-of-the-art Convnet models like
VGG16/19, googleNetNet, Inception V3, and ResNet
e TensorFlow
o VGG16
o |nception V3
o ResNet
e Torch
o LoadCaffe - Maintains a list of popular models like AlexNet and VGG Weights ported
from Caffe
e MxNet
o MxNet Model Gallery - Maintains pre-trained Inception-BN (V2) and Inception V3.

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://keras.io/applications/
https://github.com/ry/tensorflow-vgg16
https://github.com/tensorflow/models/blob/master/inception/README.md#how-to-fine-tune-a-pre-trained-model-on-a-new-task
https://github.com/ry/tensorflow-resnet
https://github.com/szagoruyko/loadcaffe
https://github.com/dmlc/mxnet-model-gallery

JORDI TORRES | FRANCESC SASTRE

170100
1104001

LN)

N ‘.=‘]
\ N 1 N
l \

0110

